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Abstract 

 

This paper addresses the critical gap between advanced technical analysis in Geotechnical 

Engineering and Artificial Intelligence (AI) and the actual level of societal disaster risk awareness 

and preparedness. While AI and Machine Learning (ML) techniques offer unprecedented accuracy 

in modeling complex ground hazards such as liquefaction and landslides, the resulting technical 

knowledge often remains confined to expert circles. This confinement leads to significant 

communication failure, hindering effective public preparation. To bridge this divide, we propose a 

novel AI-supported geotechnical risk education framework. This conceptual framework leverages 

AI's high-fidelity simulation and scenario generation capabilities to power a Pedagogical 

Translation Layer that converts complex analytical data into accessible, visually rich, and action-

oriented educational modules. The final stage incorporates Interactive Public Engagement via 

immersive technologies, such as virtual reality (VR), to facilitate behavioral change and concrete 

preparedness for ground hazards. We argue that the success of modern disaster risk reduction is 

contingent upon this integration of scientific data into targeted public education. The framework 

carries profound policy implications, contributing directly to increased public safety and fostering 

robust national resilience against geotechnical disasters. 

 

Keywords: Artificial Intelligence, Geotechnical Engineering, Disaster Risk Awareness, Educational 

Framework, Societal Resilience 

 

Introduction 

 

The increasing global scale of disaster risks and associated losses, particularly in 

the context of ground-related hazards (such as seismicity, landslides, and soil liquefaction), 



115                                                     Canadian Journal of Educational and Social Studies 

 

 
 

 

 

necessitates a redefinition of disaster management and resilience strategies (Feng & Liu, 

2024). Accelerated globalization, the complexity of critical infrastructure, and extreme 

weather events triggered by climate change are exposing urban areas to unprecedented 

levels of risk. In this context, the importance of disciplines capable of in-depth analysis 

and prediction of these risks is increasing exponentially (Memiş et al., 2025). 

In recent years, Artificial Intelligence (AI) and its subfields, Machine Learning 

(ML) and Deep Learning (DL), have offered revolutionary analytical tools in the field of 

Geotechnical Engineering. AI algorithms, by extracting meaning from large geological 

datasets, have revolutionized areas such as risk prediction models (Harle & Wankhade, 

2025), site response simulations, and inverse engineering determination of soil parameters 

with a speed and accuracy not possible with traditional methods (Hu et al., 2023a). These 

technical advancements strengthen the technical dimension of disaster risk reduction by 

enabling data-driven engineering decisions. Thanks to the power of AI, high-resolution 

risk maps can be generated, and detailed potential damage scenarios can be identified. 

However, despite this increase in high-level technical capabilities, the level of 

societal preparedness and awareness regarding disaster risks has not reached the expected 

level (Stewart, 2024). The complex information and predictions generated by AI and 

geotechnical sciences often remain inaccessible due to the technical jargon used in 

academia and expert circles. This information is not being conveyed to the at-risk local 

population, policymakers, and even relevant stakeholders outside of engineering in a clear, 

understandable, and actionable format. This situation creates a profound educational gap 

between technical expertise and public perception of risk (King, 2019). This deficiency in 

public education makes it difficult for the public to embrace the technical measures taken 

and reduces the effectiveness of response mechanisms during disasters. 

This article presents a conceptual social education framework that aims to combine 

the analytical capacity of Artificial Intelligence with critical data from Geotechnical 

Engineering to translate this information into societal benefit. Our main thesis is that 

minimizing ground-related disaster risks depends not only on the accuracy of technical 

analyses but also on communicating these analytical results to the public through inclusive 

educational methods (Thekdi et al., 2023). In the following sections, we will first discuss 

the role of AI in geotechnical risk management beyond technical analyses, analyze the 

existing educational gaps in detail, present the proposed AI-supported educational 

framework, and finally evaluate the critical implications of this framework in terms of 

policy and societal resilience. 

 

Artificial Intelligence And Geotechnical Risk: Beyond Technical Analysis 

 

Artificial Intelligence (AI) is emerging as a transformative force in geotechnical 

engineering, with the potential to revolutionize traditional analysis methods. AI/ML 
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models can solve complex problems such as soil classification, slope stability prediction, 

settlement analysis, liquefaction potential assessment, and inverse calculation of soil 

parameters with high accuracy using large datasets (Big Data) (Keskin & Memiş, 2025; 

Nguyen et al., 2025; Shahin, 2013a). The use of Deep Learning (DL) techniques, in 

particular, offers superior capabilities in integrating sensor data (IoT) and satellite imagery 

collected in the field to generate real-time risk predictions and regional soil response maps 

(Tiggeloven et al., 2025) (Keskı̇n & Memı̇ş, 2025). These capabilities shift the risk 

assessment process from reactive (post-event analysis) to a proactive and predictive 

approach. 

However, this revolutionary analytical depth provided by AI brings with it a 

significant communication paradox. Even the most sophisticated risk prediction model 

cannot be used as an effective risk mitigation tool unless its results are presented in a 

language that the public and decision-makers can understand (Capobianco et al., 2025a). 

Geotechnical risk analysis is fundamentally based on mathematical equations, probabilistic 

distributions, and complex parameter inputs. While artificial intelligence successfully 

addresses this complexity, the technical knowledge of the solution itself remains within the 

domain of experts (Nakano & Yamori, 2021a). 

This situation creates a disconnect in the flow of information, which can be termed 

the "Last Mile Problem." AI and geotechnical models are interpreted and validated by 

experts; however, this interpretation encounters a gap when it comes to communicating the 

information to the at-risk community. As a result, the public, despite having access to 

highly accurate analytical information about soil risks in their environment, lacks the 

educational tools to understand and act upon this information. This disconnect leads to a 

low level of preparedness against ground hazards and becomes one of the biggest obstacles 

to social resilience (Rokvić & Stanojević, 2024). 

To visualize this situation more clearly, the conceptual diagram shown in Figure 1 

details the disconnect in the process of technical knowledge reaching the public from 

experts. Filling this gap between technical knowledge production and societal action is 

vital for AI and Geotechnical Engineering to fulfill their social mission. The main thesis of 

this article is that this gap can be closed through education, thereby creating a genuine 

social framework that extends beyond technical analyses (Jaimes, 2025). 
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Figure 1: Conceptual illustration: The gap in technical knowledge flow 

 

Educational Gaps in Geotechnical Risk Awareness 

 

Despite the high-resolution analytical capabilities provided by Artificial 

Intelligence and Geotechnical Engineering, significant structural and methodological gaps 

exist in the process of delivering this information to the end-user. These gaps are observed 

in both the university education system and public risk communication mechanisms. 

At the engineering and technical education level, AI/ML training and Geotechnical 

Engineering courses are generally conducted in separate silos. Geotechnical courses 

primarily focus on soil mechanics principles and traditional analysis methods (Das & 

Sobhan, 2006), while AI courses mainly teach algorithmic efficiency and big data 

processing techniques. This separation prevents future engineers from developing a holistic 

perspective on the societal risk communication and ethical implications of AI-generated 

outputs (Shahin, 2013b). Even if students understand soil behavior modeling, they lack the 

skills to effectively communicate the results of these models to a non-technical audience. 

At the societal level, geotechnical risk perception is largely based on post-disaster 

experiences or speculative information. While risk education often emphasizes the effects 

of earthquakes (superstructure damage), the complex dynamics of soil-related risks, such 

as landslide potential, liquefaction, or different damage mechanisms caused by different 

soil types, are often neglected (Komac et al., 2020). Existing public education tools 

oversimplify complex geotechnical processes or fail to provide sufficient visualization. For 

effective risk communication, the public needs to connect the cause of the risk (soil 

behavior) and the consequence (potential damage) at a personal level; however, current 

educational formats fail to provide this (Himley et al., 2022a; Nakano & Yamori, 2021b). 

In this context, the visualization and scenario generation potential offered by Artificial 

Intelligence remains underutilized because it is not integrated into the education system. 

AI's ability to create risk maps and make region-specific damage predictions, if presented 

pedagogically correctly, could serve as a vital bridge to strengthen weak societal risk 

perception (Jin et al., 2021). However, currently, both academic and public education fall 
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short of meeting this need. 

Table 1 summarizes the key educational gaps identified in light of these analyses. 

This table provides a roadmap for which problems the educational framework, to be 

presented in the fourth section of this article, will address (Salifu et al., 2025). 

 

Table 1. Identified Training Gaps 

Area Current Status Gap (Deficiency) 

AI Education 
Algorithmic and technically 

focused, big data analysis. 

Societal connection, ethical 

responsibilities, risk communication 

practices. 

Geotechnics 
Education 

Analysis-focused, traditional 
modeling and design principles. 

Risk communication pedagogy, 
socialization of AI outputs, scenario-

based learning. 

Public 

Awareness 

Low, dependent on post-disaster 

experiences, focused on 

superstructure. 

Effective, visual, ground behavior-

based educational tools and 

accessibility. 

 

Ai-Supported Geotechnical Risk Education Framework 

 

Addressing the gaps in geotechnical risk awareness requires not only generating 

more information but also fundamentally changing the methodology of information 

delivery and interaction. The proposed AI-Powered Geotechnical Risk Education 

Framework is built upon three main pillars that translate technical analysis into societal 

action: High-Fidelity Simulation, Pedagogical Translation Layer, and Interactive Public 

Engagement. This framework is conceptually illustrated in Figure 2. 

 
Figure 2: Conceptual structure of the AI-supported geotechnical risk training 

framework 
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High-Fidelity Simulation (AI/ML Core) 

 

The starting point of the framework is the use of Artificial Intelligence and 

Machine Learning models in soil behavior analysis. This stage, unlike traditional 

geotechnical models, produces localized risk predictions with high spatial and temporal 

resolution (Hu et al., 2023b). AI integrates seismic, hydrogeological, and meteorological 

datasets to model the potential for landslides, liquefaction, or differential ground response 

in a specific geographical area using probabilistic scenarios (Memis & Memis, 2026). This 

output is more than just a map; it is a rich dataset reflecting the dynamic and time-varying 

nature of the risk. The data generated in this stage forms the basis for the high-quality and 

reliable content required for the next stage. 

 

Pedagogical Translation Layer (The Bridge) 

 

This is the most critical and innovative component of the proposed framework. It 

is the stage where technical analytical outputs (e.g., 3D finite element analysis results or 

probabilistic distributions) are transformed into meaningful and actionable educational 

modules tailored to the target audience. This layer acts as an interface that translates 

complex AI models into metaphors, analogies, and story-based scenarios that the public 

can understand (Himley et al., 2022b). The Translation Layer includes algorithms that 

automatically optimize the complexity and presentation format of the content according to 

different user groups (e.g., Local Governments, Civil Engineers, Elementary School 

Students, the General Public). For example, a soil liquefaction potential map is presented 

to an engineer as a technical threshold value. At the same time, for the public, it is 

visualized using the metaphor of "soils that will behave like waterlogged sand during a 

disaster" and linked to building damage predictions (Capobianco et al., 2025b). 

 

Interactive Public Participation 

 

The final stage is where the translated pedagogical content directly engages with 

the community. This layer moves away from passive information transfer (such as 

brochures and presentations) and focuses on interactive experiences that trigger behavioral 

change (Lindell & Perry, 2012). Localized risk scenarios generated by AI are experienced 

using technologies such as Virtual Reality (VR), Augmented Reality (AR), and Serious 

Games. Users can experience the effects of a potential liquefaction event on the soil type 

of their own homes within a VR simulation. This experience transforms the abstract 

concept of risk into a personal and concrete threat perception, increasing the willingness to 

adopt pre-disaster preparedness actions (building reinforcement, choosing assembly areas) 

(Maragkou et al., 2023). This interactive methodology is an indispensable strategy for 
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increasing community resilience. 

 

Policy And Societal Implications 

 

The success of the proposed AI-supported Geotechnical Risk Education 

Framework lies not only in technological and pedagogical innovations but also in the 

support this framework receives from public policies and legal regulations. This innovative 

approach, focusing on bridging the gap between technical knowledge and societal action, 

has profound social and policy implications for urban management and disaster risk 

reduction strategies. The framework's primary and most significant impact is its direct 

influence on public safety and quality of life. Increased cognitive risk awareness through 

education allows communities to internalize ground-related risks (such as liquefaction and 

landslide potential) through interactive simulations, encouraging proactive preparedness 

actions at the individual and community levels, even without mandatory legal enforcement 

(Karanci et al., 2024). This facilitates a paradigm shift from 'passive acceptance' of risk to 

'proactive management,' significantly enhancing pre-disaster preparedness levels. 

Policymakers, by transparently sharing high-quality AI-supported risk data with the public, 

can facilitate the necessary social consensus and participation for risk-based zoning plans 

and structural reinforcement programs (Reduction, 2025). 

The increased public awareness also indirectly creates positive pressure on 

infrastructure resilience. Local governments and the private sector are compelled to adopt 

higher geotechnical safety standards in critical infrastructure projects in the face of tangible 

risks visualized by AI data (Godschalk, 2003). The demands of an informed public lead to 

the prioritization of risk mitigation measures in the design and construction processes of 

critical structures such as roads, bridges, and dams. This education-based risk reduction 

strategy directly contributes to the national economy in the long term by significantly 

reducing the costs of post-disaster emergency response, recovery, and reconstruction. 

International development agencies and research have repeatedly shown that every unit 

spent on pre-disaster education yields a significant return on investment (ROI) by reducing 

post-disaster losses many times over (Hazards, 2010). The dimensions and expected 

impacts of the policy and societal benefits derived from this framework are summarized in 

detail in Table 2. 

Finally, the successful institutionalization of this framework creates a necessary 

collaborative ecosystem among universities, local governments, and civil society 

organizations. Universities should contribute their AI and geotechnical expertise, local 

governments their policy implementation and authority, and civil society organizations 

their community outreach and educational methodology expertise to this common goal. At 

the policy level, a standardized data access and privacy protocol should be established to 

translate AI outputs into educational materials. This protocol should ensure the 
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transparency and public accessibility of technical data while simultaneously guaranteeing 

the protection of sensitive personal or commercial information. Without this institutional 

integration, even the most advanced AI model will fail to function as a social framework 

and will remain within a technical silo (Pielke Jr, 2007). In conclusion, this framework 

supports a vision of a more resilient society against disasters by creating a cycle where 

scientific knowledge is not only produced but also effectively consumed and translated into 

societal benefit. 

 

Table 2: Dimensions and impacts of policy and social benefits 

Focus Area Mechanism of Impact Expected Benefit / Impact 

Public Safety 
Increased cognitive and behavioral 
awareness, shift to proactive action. 

Reduction of personal losses and 
panic situations during a disaster. 

Infrastructure 

Resilience 

Adoption of risk-based standards 

through public pressure, informed 

site selection. 

Minimization of critical 

infrastructure damage and indirect 

economic losses. 

Policy and 

Management 

Data-driven, transparent decision-

making processes; institutional 
cooperation requirement. 

Focused and effective use of 

resources for risk reduction, social 
consensus (approval). 

 

Conclusion 

 

This article strongly argues that the comprehensive technical knowledge generated 

by the convergence of Artificial Intelligence (AI) and Geotechnical Engineering disciplines 

must be socialized through education to serve societal risk reduction fully. Despite the 

revolutionary advancements of AI in risk analysis and prediction, the confinement of this 

knowledge within academic and technical circles creates a critical gap between technical 

expertise and public awareness and preparedness levels. These identified educational gaps 

stem from both disciplinary silos in engineering education and inadequacies in public 

communication of ground-related risks. 

The proposed AI-Supported Geotechnical Risk Education Framework offers a 

conceptual roadmap designed to bridge this gap. Its three core elements—High-Fidelity 

Simulation, Pedagogical Translation Layer, and Interactive Public Engagement—aim to 

fundamentally transform risk perception by translating technical data into personal 

experiences and actionable information. Through this system, local communities can 

concretely experience potential ground behavior in their living spaces using tools such as 

Virtual Reality (VR), rather than relying on complex probabilistic models. 

The policy and societal implications of this education are significant. Increased 

public awareness proactively strengthens public safety, encourages risk-based decision-

making in infrastructure investments, and reduces the long-term economic burden of post-
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disaster recovery. The article emphasizes the crucial need for collaboration between 

universities, government agencies, and civil society, as well as the establishment of 

transparent data management protocols, for the successful implementation of this 

framework. 

In conclusion, resilience against disasters will be achieved not only through the 

excellence of engineering calculations but also through the equitable and accessible 

dissemination of scientific knowledge to society. Future research should conduct pilot 

implementations of this conceptual framework, identify the most appropriate pedagogical 

translation methodologies for AI outputs, and empirically measure the effects of 

educational interventions on behavioral change. This holistic approach offers a sustainable 

path forward in managing future geotechnical disaster risks. 
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