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Abstract

This paper addresses the critical gap between advanced technical analysis in Geotechnical
Engineering and Artificial Intelligence (Al) and the actual level of societal disaster risk awareness
and preparedness. While Al and Machine Learning (ML) techniques offer unprecedented accuracy
in modeling complex ground hazards such as liquefaction and landslides, the resulting technical
knowledge often remains confined to expert circles. This confinement leads to significant
communication failure, hindering effective public preparation. To bridge this divide, we propose a
novel Al-supported geotechnical risk education framework. This conceptual framework leverages
Al's high-fidelity simulation and scenario generation capabilities to power a Pedagogical
Translation Layer that converts complex analytical data into accessible, visually rich, and action-
oriented educational modules. The final stage incorporates Interactive Public Engagement via
immersive technologies, such as virtual reality (VR), to facilitate behavioral change and concrete
preparedness for ground hazards. We argue that the success of modern disaster risk reduction is
contingent upon this integration of scientific data into targeted public education. The framework
carries profound policy implications, contributing directly to increased public safety and fostering
robust national resilience against geotechnical disasters.

Keywords: Artificial Intelligence, Geotechnical Engineering, Disaster Risk Awareness, Educational
Framework, Societal Resilience

Introduction

The increasing global scale of disaster risks and associated losses, particularly in
the context of ground-related hazards (such as seismicity, landslides, and soil liquefaction),



115 Canadian Journal of Educational and Social Studies

necessitates a redefinition of disaster management and resilience strategies (Feng & Liu,
2024). Accelerated globalization, the complexity of critical infrastructure, and extreme
weather events triggered by climate change are exposing urban areas to unprecedented
levels of risk. In this context, the importance of disciplines capable of in-depth analysis
and prediction of these risks is increasing exponentially (Memis et al., 2025).

In recent years, Artificial Intelligence (Al) and its subfields, Machine Learning
(ML) and Deep Learning (DL), have offered revolutionary analytical tools in the field of
Geotechnical Engineering. Al algorithms, by extracting meaning from large geological
datasets, have revolutionized areas such as risk prediction models (Harle & Wankhade,
2025), site response simulations, and inverse engineering determination of soil parameters
with a speed and accuracy not possible with traditional methods (Hu et al., 2023a). These
technical advancements strengthen the technical dimension of disaster risk reduction by
enabling data-driven engineering decisions. Thanks to the power of Al, high-resolution
risk maps can be generated, and detailed potential damage scenarios can be identified.

However, despite this increase in high-level technical capabilities, the level of
societal preparedness and awareness regarding disaster risks has not reached the expected
level (Stewart, 2024). The complex information and predictions generated by Al and
geotechnical sciences often remain inaccessible due to the technical jargon used in
academia and expert circles. This information is not being conveyed to the at-risk local
population, policymakers, and even relevant stakeholders outside of engineering in a clear,
understandable, and actionable format. This situation creates a profound educational gap
between technical expertise and public perception of risk (King, 2019). This deficiency in
public education makes it difficult for the public to embrace the technical measures taken
and reduces the effectiveness of response mechanisms during disasters.

This article presents a conceptual social education framework that aims to combine
the analytical capacity of Artificial Intelligence with critical data from Geotechnical
Engineering to translate this information into societal benefit. Our main thesis is that
minimizing ground-related disaster risks depends not only on the accuracy of technical
analyses but also on communicating these analytical results to the public through inclusive
educational methods (Thekdi et al., 2023). In the following sections, we will first discuss
the role of Al in geotechnical risk management beyond technical analyses, analyze the
existing educational gaps in detail, present the proposed Al-supported educational
framework, and finally evaluate the critical implications of this framework in terms of
policy and societal resilience.

Avrtificial Intelligence And Geotechnical Risk: Beyond Technical Analysis

Artificial Intelligence (Al) is emerging as a transformative force in geotechnical
engineering, with the potential to revolutionize traditional analysis methods. Al/ML
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models can solve complex problems such as soil classification, slope stability prediction,
settlement analysis, liquefaction potential assessment, and inverse calculation of soil
parameters with high accuracy using large datasets (Big Data) (Keskin & Memis, 2025;
Nguyen et al., 2025; Shahin, 2013a). The use of Deep Learning (DL) techniques, in
particular, offers superior capabilities in integrating sensor data (IoT) and satellite imagery
collected in the field to generate real-time risk predictions and regional soil response maps
(Tiggeloven et al., 2025) (Keskin & Memis, 2025). These capabilities shift the risk
assessment process from reactive (post-event analysis) to a proactive and predictive
approach.

However, this revolutionary analytical depth provided by Al brings with it a
significant communication paradox. Even the most sophisticated risk prediction model
cannot be used as an effective risk mitigation tool unless its results are presented in a
language that the public and decision-makers can understand (Capobianco et al., 2025a).
Geotechnical risk analysis is fundamentally based on mathematical equations, probabilistic
distributions, and complex parameter inputs. While artificial intelligence successfully
addresses this complexity, the technical knowledge of the solution itself remains within the
domain of experts (Nakano & Yamori, 2021a).

This situation creates a disconnect in the flow of information, which can be termed
the "Last Mile Problem.” Al and geotechnical models are interpreted and validated by
experts; however, this interpretation encounters a gap when it comes to communicating the
information to the at-risk community. As a result, the public, despite having access to
highly accurate analytical information about soil risks in their environment, lacks the
educational tools to understand and act upon this information. This disconnect leads to a
low level of preparedness against ground hazards and becomes one of the biggest obstacles
to social resilience (Rokvi¢ & Stanojevic, 2024).

To visualize this situation more clearly, the conceptual diagram shown in Figure 1
details the disconnect in the process of technical knowledge reaching the public from
experts. Filling this gap between technical knowledge production and societal action is
vital for Al and Geotechnical Engineering to fulfill their social mission. The main thesis of
this article is that this gap can be closed through education, thereby creating a genuine
social framework that extends beyond technical analyses (Jaimes, 2025).
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Figure 1: Conceptual illustration: The gap in technical knowledge flow
Educational Gaps in Geotechnical Risk Awareness

Despite the high-resolution analytical capabilities provided by Artificial
Intelligence and Geotechnical Engineering, significant structural and methodological gaps
exist in the process of delivering this information to the end-user. These gaps are observed
in both the university education system and public risk communication mechanisms.

At the engineering and technical education level, AlI/ML training and Geotechnical
Engineering courses are generally conducted in separate silos. Geotechnical courses
primarily focus on soil mechanics principles and traditional analysis methods (Das &
Sobhan, 2006), while Al courses mainly teach algorithmic efficiency and big data
processing techniques. This separation prevents future engineers from developing a holistic
perspective on the societal risk communication and ethical implications of Al-generated
outputs (Shahin, 2013b). Even if students understand soil behavior modeling, they lack the
skills to effectively communicate the results of these models to a non-technical audience.

At the societal level, geotechnical risk perception is largely based on post-disaster
experiences or speculative information. While risk education often emphasizes the effects
of earthquakes (superstructure damage), the complex dynamics of soil-related risks, such
as landslide potential, liquefaction, or different damage mechanisms caused by different
soil types, are often neglected (Komac et al., 2020). Existing public education tools
oversimplify complex geotechnical processes or fail to provide sufficient visualization. For
effective risk communication, the public needs to connect the cause of the risk (soil
behavior) and the consequence (potential damage) at a personal level; however, current
educational formats fail to provide this (Himley et al., 2022a; Nakano & Yamori, 2021b).
In this context, the visualization and scenario generation potential offered by Artificial
Intelligence remains underutilized because it is not integrated into the education system.
Al's ability to create risk maps and make region-specific damage predictions, if presented
pedagogically correctly, could serve as a vital bridge to strengthen weak societal risk
perception (Jin et al., 2021). However, currently, both academic and public education fall
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short of meeting this need.
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Table 1 summarizes the key educational gaps identified in light of these analyses.
This table provides a roadmap for which problems the educational framework, to be
presented in the fourth section of this article, will address (Salifu et al., 2025).

Table 1. Identified Training Gaps

focused, big data analysis.

Area Current Status Gap (Deficiency)
. . . Societal connection, ethical
Al Education Algorithmic  and  technically responsibilities, risk communication

practices.

Geotechnics Analysis-focused, traditional

Risk communication pedagogy,
socialization of Al outputs, scenario-

Education modeling and design principles. based leamning.
. Low, dependent on post-disaster|Effective, visual, ground behavior-
Public . .
experiences, focused on|based educational tools and
Awareness I
superstructure. accessibility.

Ai-Supported Geotechnical Risk Education Framework

Addressing the gaps in geotechnical risk awareness requires not only generating
more information but also fundamentally changing the methodology of information
delivery and interaction. The proposed Al-Powered Geotechnical Risk Education
Framework is built upon three main pillars that translate technical analysis into societal
action: High-Fidelity Simulation, Pedagogical Translation Layer, and Interactive Public
Engagement. This framework is conceptually illustrated in Figure 2.
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Figure 2: Conceptual structure of the Al-supported geotechnical risk training

framework
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High-Fidelity Simulation (Al/ML Core)

The starting point of the framework is the use of Artificial Intelligence and
Machine Learning models in soil behavior analysis. This stage, unlike traditional
geotechnical models, produces localized risk predictions with high spatial and temporal
resolution (Hu et al., 2023b). Al integrates seismic, hydrogeological, and meteorological
datasets to model the potential for landslides, liquefaction, or differential ground response
in a specific geographical area using probabilistic scenarios (Memis & Memis, 2026). This
output is more than just a map; it is a rich dataset reflecting the dynamic and time-varying
nature of the risk. The data generated in this stage forms the basis for the high-quality and
reliable content required for the next stage.

Pedagogical Translation Layer (The Bridge)

This is the most critical and innovative component of the proposed framework. It
is the stage where technical analytical outputs (e.g., 3D finite element analysis results or
probabilistic distributions) are transformed into meaningful and actionable educational
modules tailored to the target audience. This layer acts as an interface that translates
complex Al models into metaphors, analogies, and story-based scenarios that the public
can understand (Himley et al., 2022b). The Translation Layer includes algorithms that
automatically optimize the complexity and presentation format of the content according to
different user groups (e.g., Local Governments, Civil Engineers, Elementary School
Students, the General Public). For example, a soil liquefaction potential map is presented
to an engineer as a technical threshold value. At the same time, for the public, it is
visualized using the metaphor of "soils that will behave like waterlogged sand during a
disaster" and linked to building damage predictions (Capobianco et al., 2025b).

Interactive Public Participation

The final stage is where the translated pedagogical content directly engages with
the community. This layer moves away from passive information transfer (such as
brochures and presentations) and focuses on interactive experiences that trigger behavioral
change (Lindell & Perry, 2012). Localized risk scenarios generated by Al are experienced
using technologies such as Virtual Reality (VR), Augmented Reality (AR), and Serious
Games. Users can experience the effects of a potential liquefaction event on the soil type
of their own homes within a VR simulation. This experience transforms the abstract
concept of risk into a personal and concrete threat perception, increasing the willingness to
adopt pre-disaster preparedness actions (building reinforcement, choosing assembly areas)
(Maragkou et al., 2023). This interactive methodology is an indispensable strategy for
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increasing community resilience.
Policy And Societal Implications

The success of the proposed Al-supported Geotechnical Risk Education
Framework lies not only in technological and pedagogical innovations but also in the
support this framework receives from public policies and legal regulations. This innovative
approach, focusing on bridging the gap between technical knowledge and societal action,
has profound social and policy implications for urban management and disaster risk
reduction strategies. The framework's primary and most significant impact is its direct
influence on public safety and quality of life. Increased cognitive risk awareness through
education allows communities to internalize ground-related risks (such as liquefaction and
landslide potential) through interactive simulations, encouraging proactive preparedness
actions at the individual and community levels, even without mandatory legal enforcement
(Karanci et al., 2024). This facilitates a paradigm shift from 'passive acceptance' of risk to
‘proactive management,’ significantly enhancing pre-disaster preparedness levels.
Policymakers, by transparently sharing high-quality Al-supported risk data with the public,
can facilitate the necessary social consensus and participation for risk-based zoning plans
and structural reinforcement programs (Reduction, 2025).

The increased public awareness also indirectly creates positive pressure on
infrastructure resilience. Local governments and the private sector are compelled to adopt
higher geotechnical safety standards in critical infrastructure projects in the face of tangible
risks visualized by Al data (Godschalk, 2003). The demands of an informed public lead to
the prioritization of risk mitigation measures in the design and construction processes of
critical structures such as roads, bridges, and dams. This education-based risk reduction
strategy directly contributes to the national economy in the long term by significantly
reducing the costs of post-disaster emergency response, recovery, and reconstruction.
International development agencies and research have repeatedly shown that every unit
spent on pre-disaster education yields a significant return on investment (ROI) by reducing
post-disaster losses many times over (Hazards, 2010). The dimensions and expected
impacts of the policy and societal benefits derived from this framework are summarized in
detail in Table 2.

Finally, the successful institutionalization of this framework creates a necessary
collaborative ecosystem among universities, local governments, and civil society
organizations. Universities should contribute their Al and geotechnical expertise, local
governments their policy implementation and authority, and civil society organizations
their community outreach and educational methodology expertise to this common goal. At
the policy level, a standardized data access and privacy protocol should be established to
translate Al outputs into educational materials. This protocol should ensure the
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transparency and public accessibility of technical data while simultaneously guaranteeing
the protection of sensitive personal or commercial information. Without this institutional
integration, even the most advanced Al model will fail to function as a social framework
and will remain within a technical silo (Pielke Jr, 2007). In conclusion, this framework
supports a vision of a more resilient society against disasters by creating a cycle where
scientific knowledge is not only produced but also effectively consumed and translated into
societal benefit.

Table 2: Dimensions and impacts of policy and social benefits

Focus Area Mechanism of Impact Expected Benefit / Impact
. Increased cognitive and behavioral |Reduction of personal losses and
Public Safety . ; ; AR X i
awareness, shift to proactive action. [panic situations during a disaster.
Adoption of risk-based standards|Minimization of critical
Infrastructure . - . .

i~ through public pressure, informed |infrastructure damage and indirect

Resilience . . .
site selection. economic losses.

. Data-driven, transparent decision-|Focused and effective use of
Policy and : R ' . .
Management making _ processes; institutional |resources for risk reduction, social

cooperation requirement. consensus (approval).

Conclusion

This article strongly argues that the comprehensive technical knowledge generated
by the convergence of Artificial Intelligence (Al) and Geotechnical Engineering disciplines
must be socialized through education to serve societal risk reduction fully. Despite the
revolutionary advancements of Al in risk analysis and prediction, the confinement of this
knowledge within academic and technical circles creates a critical gap between technical
expertise and public awareness and preparedness levels. These identified educational gaps
stem from both disciplinary silos in engineering education and inadequacies in public
communication of ground-related risks.

The proposed Al-Supported Geotechnical Risk Education Framework offers a
conceptual roadmap designed to bridge this gap. Its three core elements—High-Fidelity
Simulation, Pedagogical Translation Layer, and Interactive Public Engagement—aim to
fundamentally transform risk perception by translating technical data into personal
experiences and actionable information. Through this system, local communities can
concretely experience potential ground behavior in their living spaces using tools such as
Virtual Reality (VR), rather than relying on complex probabilistic models.

The policy and societal implications of this education are significant. Increased
public awareness proactively strengthens public safety, encourages risk-based decision-
making in infrastructure investments, and reduces the long-term economic burden of post-
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disaster recovery. The article emphasizes the crucial need for collaboration between
universities, government agencies, and civil society, as well as the establishment of
transparent data management protocols, for the successful implementation of this
framework.

In conclusion, resilience against disasters will be achieved not only through the
excellence of engineering calculations but also through the equitable and accessible
dissemination of scientific knowledge to society. Future research should conduct pilot
implementations of this conceptual framework, identify the most appropriate pedagogical
translation methodologies for Al outputs, and empirically measure the effects of
educational interventions on behavioral change. This holistic approach offers a sustainable
path forward in managing future geotechnical disaster risks.
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